{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[{"file_id":"1cW_3McCwTe6Hnm-ZFO4RgLqwnMBKeXQd","timestamp":1649103608968}],"collapsed_sections":["GJBs_flRovLc","nXfEKydgE_zF","zoZlHnE9FfK_","eZ5MdpScGSWa","tX7Zvue2UB1b","WAYsFtc-UB1z","KUAmfq6pUB12","U2ne8TJuUB2N","x4AefoHYUB2f","PDZV7BWIUB2h","gwNkhidcUB29","IcCOSky8UB2Y","OVCLtPfGUB2a","vjsi1r7dUB3S","p0yFkcijUB3Q","mUlIjZUHUB3U","cDvhM0cVUB3n","ccpE2G3VUB4H"],"toc_visible":true},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.6.10"},"toc":{"toc_cell":false,"toc_number_sections":true,"toc_threshold":6,"toc_window_display":false},"gpuClass":"standard","accelerator":"GPU"},"cells":[{"cell_type":"markdown","metadata":{"id":"Nma_JWh-W-IF"},"source":["

Te damos la bienvenida a Colab

\n","\n","Si ya conoces Colab, mira este video para aprender sobre las tablas interactivas, la vista histórica de código ejecutado y la paleta de comandos.\n","\n","
\n"," \n"," Miniatura de un video que muestra 3 funciones notables de Colab de Google\n"," \n","
"]},{"cell_type":"markdown","metadata":{"id":"5fCEDCU_qrC0"},"source":["\n","\n","\n","

¿Qué es Colab?

\n","\n","Colab, o \"Colaboratory\", te permite escribir y ejecutar código de Python en tu navegador, con\n","- Una configuración lista para que empieces a programar\n","- Acceso gratuito a GPU\n","- Facilidad para compartir\n","\n","Seas estudiante, científico de datos o investigador de IA, Colab facilita tu trabajo. Mira este video introductorio sobre Colab para obtener más información, o bien comienza a usarlo más abajo."]},{"cell_type":"markdown","metadata":{"id":"GJBs_flRovLc"},"source":["## Introducción\n","\n","El documento que estás leyendo no es una página web estática, sino un entorno interactivo denominado notebook de Colab, que permite escribir y ejecutar código.\n","\n","Por ejemplo, esta es una celda de código con una secuencia de comandos Python corta que calcula un valor, lo almacena en una variable y devuelve el resultado:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"gJr_9dXGpJ05","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676981667503,"user_tz":300,"elapsed":10,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"15104242-53d8-4b0e-a9f9-c72a3da18aa6"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["86400"]},"metadata":{},"execution_count":1}],"source":["seconds_in_a_day = 24 * 60 * 60\n","seconds_in_a_day"]},{"cell_type":"code","source":["type(seconds_in_a_day)"],"metadata":{"id":"85UUJXz-eieY","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676981673631,"user_tz":300,"elapsed":190,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"e10743ff-61eb-47b6-ad3d-8f0abb1d5ed5"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["int"]},"metadata":{},"execution_count":2}]},{"cell_type":"markdown","metadata":{"id":"2fhs6GZ4qFMx"},"source":["A fin de ejecutar el código en la celda anterior, haz clic en él para seleccionarlo y luego presiona el botón de reproducción ubicado a la izquierda del código o usa la combinación de teclas \"Command/Ctrl + Intro\". Para editar el código, solo haz clic en la celda y comienza a editar.\n","\n","Las variables que defines en una celda pueden usarse en otras:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"-gE-Ez1qtyIA","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676981692376,"user_tz":300,"elapsed":4,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"450c74ac-2e42-4fa7-9a4a-739a285acf5f"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["604800"]},"metadata":{},"execution_count":3}],"source":["seconds_in_a_week = 7 * seconds_in_a_day\n","seconds_in_a_week"]},{"cell_type":"markdown","metadata":{"id":"lSrWNr3MuFUS"},"source":["Los notebooks de Colab te permiten combinar código ejecutable y texto enriquecido en un único documento, junto con imágenes, HTML, LaTeX y mucho más. Los notebooks que crees en Colab se almacenan en tu cuenta de Google Drive. Puedes compartir fácilmente los notebooks de Colab con amigos o compañeros de trabajo para que realicen comentarios o los editen. Si quieres obtener más información, consulta la Descripción general de Colab. Para crear un nuevo notebook de Colab, ve al menú Archivo que aparece más arriba o usa este vínculo: crear un nuevo notebook de Colab.\n","\n","Los notebooks de Colab son notebooks de Jupyter que aloja Colab. Para obtener más información sobre el proyecto Jupyter, visita jupyter.org."]},{"cell_type":"markdown","source":["#Como saber la versión de Python"],"metadata":{"id":"nXfEKydgE_zF"}},{"cell_type":"code","source":["#Versión de python\n","!python --version"],"metadata":{"id":"Ih6TyuuSxDeQ","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676981706845,"user_tz":300,"elapsed":750,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"31672d4c-796a-4c8e-ca85-9abd6dd845e9"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Python 3.8.10\n"]}]},{"cell_type":"markdown","source":["# Como saber la versión de Linux"],"metadata":{"id":"zoZlHnE9FfK_"}},{"cell_type":"code","source":["# Versión de Ubuntu\n","!lsb_release -a"],"metadata":{"id":"wVb8Zts91h60","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676981737664,"user_tz":300,"elapsed":156,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"61546525-da68-4f4d-8b0d-4b92f4b91e9b"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["No LSB modules are available.\n","Distributor ID:\tUbuntu\n","Description:\tUbuntu 20.04.5 LTS\n","Release:\t20.04\n","Codename:\tfocal\n"]}]},{"cell_type":"markdown","source":["# Tutorial Python\n","https://www.w3schools.com/python/default.asp\n"],"metadata":{"id":"ud-8kg-GlpKh"}},{"cell_type":"markdown","source":["# Conexión con Google drive"],"metadata":{"id":"eZ5MdpScGSWa"}},{"cell_type":"code","metadata":{"id":"ARxid2rvoDcY","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676981858517,"user_tz":300,"elapsed":18307,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"62cca87d-7f3e-4805-da59-aa826f669990"},"source":["from google.colab import drive\n","drive.mount('/content/drive')"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Mounted at /content/drive\n"]}]},{"cell_type":"markdown","metadata":{"id":"tX7Zvue2UB1b"},"source":["# Asignación automatica de tipos de variables\n"]},{"cell_type":"markdown","metadata":{"id":"de4aF0csUB1c"},"source":["En Python no es necesario declarar explícitamente el tipo de las variables. El intérprete trata de inferir el tipo de las variables según se usan. Igualmente, las operaciones tienen semántica distinta para distintos tipos de datos. Fíjate en el ejemplo siguiente."]},{"cell_type":"code","metadata":{"id":"YniLArLxUB1c","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676981860966,"user_tz":300,"elapsed":740,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"92779183-d1d3-474d-8041-30c6ea8dc2f8"},"source":["import numpy as np\n","a = 10\n","b = 3\n","c = 3.\n","d = \"holaWorld\"\n","e = True\n","f = 1e3\n","g = [1,2,3] # La lista es mutable\n","h = (1,2,3) # La tupla es inmutable\n","i = 5j\n","j = 1+2j\n","k = np.int16(300)\n","l = np.int8(6)\n","\n","print (\"a=\",type(a))\n","print (\"b=\",type(b))\n","print (\"c=\",type(c))\n","print (\"d=\",type(d))\n","print (\"e=\",type(e))\n","print (\"f=\",type(f))\n","print (\"g=\",type(g))\n","print (\"h=\",type(h))\n","print (\"i=\",type(i))\n","print (\"j=\",type(j))\n","print (\"k=\",type(k))\n","print (\"l=\",type(l))\n"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["a= \n","b= \n","c= \n","d= \n","e= \n","f= \n","g= \n","h= \n","i= \n","j= \n","k= \n","l= \n"]}]},{"cell_type":"markdown","metadata":{"id":"WAYsFtc-UB1z"},"source":["# Casteo de variables"]},{"cell_type":"code","metadata":{"id":"PLXD-OKiUB10","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676981878081,"user_tz":300,"elapsed":684,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"6d17b066-38fe-4e3a-bc06-931037379461"},"source":["x='2'\n","y='3'\n","z=x+y\n","print('z=',z)\n","\n","x1=int(x)\n","y1=int(y)\n","z1=x1+y1\n","print('z1=',z1)"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["z= 23\n","z1= 5\n"]}]},{"cell_type":"markdown","metadata":{"id":"KUAmfq6pUB12"},"source":["# Operaciones Aritméticas"]},{"cell_type":"code","metadata":{"id":"lfoacHzSUB13","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676981906597,"user_tz":300,"elapsed":141,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"ed44da6d-36ed-4626-8b49-8b8cf7b04b89"},"source":["print(\"Suma = \", 4+5)\n","print(\"Resta = \", 4-5)\n","print(\"Multiplicación = \", 4*5)\n","print(\"División = \", 4/5)\n","print(\"División entera = \", 10//3)\n","print(\"Residuo = \", 10%3)\n","print(\"Potencia = \", 2**3)\n","print(\"Raiz = \", 2**0.5)"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Suma = 9\n","Resta = -1\n","Multiplicación = 20\n","División = 0.8\n","División entera = 3\n","Residuo = 1\n","Potencia = 8\n","Raiz = 1.4142135623730951\n"]}]},{"cell_type":"markdown","metadata":{"id":"U2ne8TJuUB2N"},"source":["# Operaciones con cadena de texto"]},{"cell_type":"code","metadata":{"id":"cSQP-PvnUB2O","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1674699803192,"user_tz":300,"elapsed":9,"user":{"displayName":"Harold Brayan Arteaga Arteaga","userId":"02881993551096447470"}},"outputId":"a686a559-4ebf-4e1a-97e1-370a83ca83ee"},"source":["#Suma o concatenación\n","x=\"Un divertido\"+\"programa\"+\"de\"+\"radio\"\n","print(x)\n","#Multiplicación de una cadena con un número\n","y=3*\"programas\"\n","print(y)\n","#Obtener longitud de una cadena\n","print('longitud de la cadena:',len(y))"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Un divertidoprogramaderadio\n","programasprogramasprogramas\n","longitud de la cadena: 27\n"]}]},{"cell_type":"code","metadata":{"id":"n0a_21HaUB2Q","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676664487801,"user_tz":300,"elapsed":8,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"51af8b84-0b00-4876-9792-e972e8231303"},"source":["#Acceder a una posición de la cadena\n","cadena = \"programA\"\n","print('acceder a una posicion determinada:',cadena[0])\n","print('acceder a la última posición:',cadena[-1])\n","\n","# Comillas simples\n","cadenaa = 'Texto entre comillas simples'\n","print (cadenaa)\n","print (type(cadenaa))\n","\n","# Comillas dobles\n","cadenab = \"Texto entre comillas dobles\"\n","print (cadenab)\n","print (type(cadenab))"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["acceder a una posicion determinada: p\n","acceder a la última posición: A\n","Texto entre comillas simples\n","\n","Texto entre comillas dobles\n","\n"]}]},{"cell_type":"code","metadata":{"id":"QWIyRgxbUB2S"},"source":["cad='reinel'"],"execution_count":null,"outputs":[]},{"cell_type":"code","metadata":{"id":"dHFMjDAYUB2V","colab":{"base_uri":"https://localhost:8080/","height":35},"executionInfo":{"status":"ok","timestamp":1674857850200,"user_tz":300,"elapsed":419,"user":{"displayName":"Reinel Tabares Soto","userId":"11849440450678359784"}},"outputId":"bdffea48-413e-4f11-da60-2941992025e8"},"source":["cad[2:5]"],"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["'ine'"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"string"}},"metadata":{},"execution_count":48}]},{"cell_type":"code","metadata":{"id":"accup8gjUB2W","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676664538838,"user_tz":300,"elapsed":3,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"4628d904-300f-4324-cfe6-b5f137a925c7"},"source":["cadenaesc = 'Texto entre \\n\\n\\n \\t\\t\\tcomillas simples'\n","print (cadenaesc)\n","print (type(cadenaesc))"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Texto entre \n","\n","\n"," \t\t\tcomillas simples\n","\n"]}]},{"cell_type":"markdown","metadata":{"id":"x4AefoHYUB2f"},"source":["# Tuplas (Datos inmutables)"]},{"cell_type":"markdown","metadata":{"id":"hNzq9BfoUB2f"},"source":["Las tuplas son más rápidas que las listas. Si define un conjunto **constante** de valores y todo lo que va a hacer es iterar sobre ellos, use una tupla en lugar de una lista.\n","\n","Una tupla es una secuencia de items ordenada e inmutable.\n","\n","Los items de una tupla pueden ser objetos de cualquier tipo.\n","\n","Para especificar una tupla, lo hacemos con los elementos separados por comas dentro de **paréntesis**.\n","\n","Una tupla con únicamente dos elementos es denominada par.\n","\n","Para crear una tupla con un único elemento (singleton), se añade una coma al final de la expresión.\n","\n","Para definir una tupla vacía, se emplean unos paréntesis vacíos."]},{"cell_type":"code","metadata":{"id":"NhlVekEXUB2g","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676664793631,"user_tz":300,"elapsed":4,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"2d2defbc-e65a-4b94-c7bc-d3cf95086c2f"},"source":["tupla = ('cadena de texto', 15, 2.8, 'otro dato', 25,25)\n","print(tupla)\n","print(type(tupla))\n","print(tupla[1:4])\n","print('cuantas veces hay un elemento=',tupla.count(25))\n","print('dice en que posicion esta el elemento=',tupla.index(15))\n","#tupla[0]=2# dado que es una TUPLA no se puede agregar ni borrar información."],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["('cadena de texto', 15, 2.8, 'otro dato', 25, 25)\n","\n","(15, 2.8, 'otro dato')\n","cuantas veces hay un elemento= 2\n","dice en que posicion esta el elemento= 1\n"]}]},{"cell_type":"code","source":["tupla, type(tupla), tupla[1:-1],tupla.count(25),tupla.index(15)"],"metadata":{"id":"BW-EA51oufx8","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676664752006,"user_tz":300,"elapsed":2,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"c0b440da-a13c-49d6-88fd-1d659c983ee4"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["(('cadena de texto', 15, 2.8, 'otro dato', 25, 25),\n"," tuple,\n"," (15, 2.8, 'otro dato', 25),\n"," 2,\n"," 1)"]},"metadata":{},"execution_count":22}]},{"cell_type":"code","source":["#tupla[0]=2"],"metadata":{"id":"itI6A3DLu7p5"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"PDZV7BWIUB2h"},"source":["# Listas (Datos no inmutables)"]},{"cell_type":"markdown","metadata":{"id":"t-U8t9EPUB2i"},"source":["Una lista es una secuencia ordenada de elementos **mutable**.\n","\n","Los items de una lista pueden ser objetos de distintos tipos.\n","\n","Para especificar una lista se indican los elementos separados por comas en el interior de **CORCHETES**.\n","\n","Para denotar una lista vacía se emplean dos corchetes vacíos."]},{"cell_type":"code","metadata":{"id":"YMbuMBM6UB2i","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676664864589,"user_tz":300,"elapsed":8,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"d01b6180-61b2-41a9-ab8f-9916b462edd4"},"source":["a = [1,2,3,\"hola\", [10, \"nunca\", 90], -32]\n","print (\"Toda la lista= \",a)\n","print(type(a))\n","print (\"Longitud de la lista= \", len(a))\n","print(\"Acceder a un rango de posiciones=\",a[0:4])\n","print(\"Acceder a una posición específica= \",a[4])\n","print(\"Acceder a la última posición= \",a[-1])"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Toda la lista= [1, 2, 3, 'hola', [10, 'nunca', 90], -32]\n","\n","Longitud de la lista= 6\n","Acceder a un rango de posiciones= [1, 2, 3, 'hola']\n","Acceder a una posición específica= [10, 'nunca', 90]\n","Acceder a la última posición= -32\n"]}]},{"cell_type":"code","metadata":{"id":"pycJHgpfUB2k","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676664935117,"user_tz":300,"elapsed":2,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"d1967237-cc0f-4777-fb47-2998e122daf7"},"source":["a[1:-1]"],"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["[2, 3, 'hola', [10, 'nunca', 90]]"]},"metadata":{},"execution_count":27}]},{"cell_type":"code","metadata":{"id":"voXIHPIVUB2l","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676665236825,"user_tz":300,"elapsed":5,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"55c57704-c924-43de-f618-b19051f7c1f5"},"source":["print(\"Lista= \",a)\n","a.append(\"Nuevo último\")\n","print(\"Lista con nuevo último= \",a)\n","a[1]='nuevo1'\n","print(\"Lista con nuevo elemento en las posición 1= \",a)\n","a.insert(2,'nuevo2')\n","print(\"Lista con nuevo elemento en las posición 2= \",a)"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Lista= [1, 2, 3, 'hola', [10, 'nunca', 90], -32]\n","Lista con nuevo último= [1, 2, 3, 'hola', [10, 'nunca', 90], -32, 'Nuevo último']\n","Lista con nuevo elemento en las posición 1= [1, 'nuevo1', 3, 'hola', [10, 'nunca', 90], -32, 'Nuevo último']\n","Lista con nuevo elemento en las posición 2= [1, 'nuevo1', 'nuevo2', 3, 'hola', [10, 'nunca', 90], -32, 'Nuevo último']\n"]}]},{"cell_type":"code","metadata":{"id":"doRMsUkl6H2g","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676665239293,"user_tz":300,"elapsed":2,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"b08b8d00-5808-4c14-8a90-3e7249e79b96"},"source":["a,type(a),len(a)"],"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["([1, 'nuevo1', 'nuevo2', 3, 'hola', [10, 'nunca', 90], -32, 'Nuevo último'],\n"," list,\n"," 8)"]},"metadata":{},"execution_count":30}]},{"cell_type":"code","metadata":{"id":"WuEvXSZOUB2v","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676665265996,"user_tz":300,"elapsed":962,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"5ea030a3-df53-496c-9e84-b760c326a622"},"source":["for i in range(len(a)):\n"," print (i, \"-->\", a[i])"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["0 --> 1\n","1 --> nuevo1\n","2 --> nuevo2\n","3 --> 3\n","4 --> hola\n","5 --> [10, 'nunca', 90]\n","6 --> -32\n","7 --> Nuevo último\n"]}]},{"cell_type":"code","metadata":{"id":"prtcGw3-UB2x","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676665277399,"user_tz":300,"elapsed":3,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"e676b661-118d-4663-c758-126a0a0177ae"},"source":["for i in a:\n"," print (i)"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["1\n","nuevo1\n","nuevo2\n","3\n","hola\n","[10, 'nunca', 90]\n","-32\n","Nuevo último\n"]}]},{"cell_type":"code","metadata":{"id":"6U5NQSYEUB2z","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676665305006,"user_tz":300,"elapsed":489,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"fa759195-e5fa-4b4c-c664-4adb5f4e66f7"},"source":["print(a)\n","print(a[2:])\n","print(a[-3:])\n","print(a[4])"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["[1, 'nuevo1', 'nuevo2', 3, 'hola', [10, 'nunca', 90], -32, 'Nuevo último']\n","['nuevo2', 3, 'hola', [10, 'nunca', 90], -32, 'Nuevo último']\n","[[10, 'nunca', 90], -32, 'Nuevo último']\n","hola\n"]}]},{"cell_type":"code","metadata":{"id":"BNiiL6bIUB28","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676665439071,"user_tz":300,"elapsed":5,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"138110c8-8655-4bf5-de81-9cf8a2fbb731"},"source":["a = [1,2,3,\"hola\", [10, \"nunca\", 90], -32]\n","print (a[4])\n","print (a[4][0])\n","print (a[4][1])\n","print (a[4][1][2:])"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["[10, 'nunca', 90]\n","10\n","nunca\n","nca\n"]}]},{"cell_type":"markdown","metadata":{"id":"gwNkhidcUB29"},"source":["# Diccionarios"]},{"cell_type":"markdown","metadata":{"id":"zbvw5_YsUB2-"},"source":["Los diccionarios de Python son una lista de consulta de términos de los cuales se proporcionan valores asociados.\n","En Python, un diccionario es una colección **no-ordenada** de valores que son accedidos a traves de una clave. Es decir, en lugar de acceder a la información mediante el índice numérico, como es el caso de las listas y tuplas, es posible acceder a los valores a través de sus claves, que pueden ser de diversos tipo.\n","Las claves son únicas dentro de un diccionario, es decir que no puede haber un diccionario que tenga dos veces la misma clave, si se asigna un valor a una clave ya existente, se reemplaza el valor anterior.\n","No hay una forma directa de acceder a una clave a través de su valor, y nada impide que un mismo valor se encuentre asignado a distintas claves.\n","La informacion almacenada en los diccionarios, no tiene un orden particular. Ni por clave ni por valor, ni tampoco por el orden en que han sido agregados al diccionario.\n","Cualquier variable de tipo inmutable, puede ser clave de un diccionario: cadenas, enteros, tuplas (con valores inmutables en sus miembros), etc. No hay restricciones para los valores que el diccionario puede contener, cualquier tipo puede ser el valor: listas, cadenas, tuplas, otros diccionarios, objetos, etc."]},{"cell_type":"code","metadata":{"id":"wP1XQw5aUB2-","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676666146451,"user_tz":300,"elapsed":6,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"0080ed10-d285-4514-8f5d-01cf76480360"},"source":["# Definir una variable diccionario\n","futbolistas = dict()\n","\n","futbolistas = {\n"," 1: \"Casillas\", 6: \"Iniesta\",3: \"Piqué\",\n"," 5: \"Puyol\",\n"," 7: \"Villa\", 8: \"Xavi Hernández\",\n"," 9: \"Torres\", 11: \"Capdevila\",\n"," 14: \"Xavi Alonso\", 15: \"Ramos\",\n"," 16: \"Busquets\"\n","}\n","\n","# Recorrer el diccionario, imprimiendo clave - valor\n","print (\"Vemos que los elementos no van \\\"ordenados\\\":\")\n","for k, v in futbolistas.items():\n"," print (\"{} --> {}\".format(k,v))"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Vemos que los elementos no van \"ordenados\":\n","1 --> Casillas\n","6 --> Iniesta\n","3 --> Piqué\n","5 --> Puyol\n","7 --> Villa\n","8 --> Xavi Hernández\n","9 --> Torres\n","11 --> Capdevila\n","14 --> Xavi Alonso\n","15 --> Ramos\n","16 --> Busquets\n"]}]},{"cell_type":"code","source":["futbolistas.items(),futbolistas.keys(),futbolistas.values()"],"metadata":{"id":"S_e9IScMtqwS","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676666147875,"user_tz":300,"elapsed":3,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"5d300f6d-69ea-4cef-ccc1-d7a76bbbf6d9"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["(dict_items([(1, 'Casillas'), (6, 'Iniesta'), (3, 'Piqué'), (5, 'Puyol'), (7, 'Villa'), (8, 'Xavi Hernández'), (9, 'Torres'), (11, 'Capdevila'), (14, 'Xavi Alonso'), (15, 'Ramos'), (16, 'Busquets')]),\n"," dict_keys([1, 6, 3, 5, 7, 8, 9, 11, 14, 15, 16]),\n"," dict_values(['Casillas', 'Iniesta', 'Piqué', 'Puyol', 'Villa', 'Xavi Hernández', 'Torres', 'Capdevila', 'Xavi Alonso', 'Ramos', 'Busquets']))"]},"metadata":{},"execution_count":44}]},{"cell_type":"code","source":["# Nº de elementos que tiene un diccionario\n","numElemen = len(futbolistas)\n","print (\"\\nEl número de futbolistas es de {}\".format(numElemen))\n","\n","# Imprimir las claves que tiene un diccionario\n","keys = futbolistas.keys();\n","print (\"\\nLas claves de nuestro diccionario son : {}\".format(keys))\n","\n","# Imprimir los valores que tiene un diccionario\n","values = futbolistas.values();\n","print (\"\\nLos valores de nuestro diccionario son : {}\".format(values))\n"],"metadata":{"id":"UYgdcLAcfqAf","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676666148321,"user_tz":300,"elapsed":3,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"1ceaae5e-507e-4dae-fa58-b0d0c3775260"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\n","El número de futbolistas es de 11\n","\n","Las claves de nuestro diccionario son : dict_keys([1, 6, 3, 5, 7, 8, 9, 11, 14, 15, 16])\n","\n","Los valores de nuestro diccionario son : dict_values(['Casillas', 'Iniesta', 'Piqué', 'Puyol', 'Villa', 'Xavi Hernández', 'Torres', 'Capdevila', 'Xavi Alonso', 'Ramos', 'Busquets'])\n"]}]},{"cell_type":"code","source":["# Obtener el valor de un elemento dada su clave\n","elem = futbolistas.get(6)\n","print (\"\\nEl futbolista con clave 6 es {}\".format(elem))\n","\n","# Insertamos un elemento en el diccionario\n","## si la clave ya existe, el elemento NO se inserta\n","futbolistas.setdefault(10, 'Cesc')\n","print (\"\\nInsertamos el elemento con clave 10 y valor Cesc\")\n","print (\"Ahora el diccionario queda : {}\".format(futbolistas))\n","\n","# Añadimos, de otro modo, un elemento al diccionario\n","## si la clave ya existe, el valor se cambia por este nuevo\n","futbolistas[22] = 'Navas'\n","print (\"\\nAñadimos un nuevo elemento, ahora el diccionario queda: \")\n","print (futbolistas)\n"],"metadata":{"id":"kv7rvkSIf4XD","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676666149898,"user_tz":300,"elapsed":11,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"148c7790-0464-4c7f-c6ba-47f7d4df07f5"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\n","El futbolista con clave 6 es Iniesta\n","\n","Insertamos el elemento con clave 10 y valor Cesc\n","Ahora el diccionario queda : {1: 'Casillas', 6: 'Iniesta', 3: 'Piqué', 5: 'Puyol', 7: 'Villa', 8: 'Xavi Hernández', 9: 'Torres', 11: 'Capdevila', 14: 'Xavi Alonso', 15: 'Ramos', 16: 'Busquets', 10: 'Cesc'}\n","\n","Añadimos un nuevo elemento, ahora el diccionario queda: \n","{1: 'Casillas', 6: 'Iniesta', 3: 'Piqué', 5: 'Puyol', 7: 'Villa', 8: 'Xavi Hernández', 9: 'Torres', 11: 'Capdevila', 14: 'Xavi Alonso', 15: 'Ramos', 16: 'Busquets', 10: 'Cesc', 22: 'Navas'}\n"]}]},{"cell_type":"code","source":["# Eliminamos un elemento del diccionario dada su clave\n","futbolistas.pop(22)\n","print (\"\\nEliminamos el elemento con clave 22\")\n","print (\"Ahora el diccionario queda: {}\".format(futbolistas))\n","\n","# Hacemos una copia del diccionario\n","futbolistas_copia = futbolistas.copy()\n","print (\"\\nLa copia del diccionario tiene los valores:\")\n","print (futbolistas_copia)\n","\n","# Borramos los elementos de un diccionario\n","futbolistas_copia.clear()\n","print (\"\\nVaciamos el diccionario nuevo creado, ahora los valores en el: {}\".format(futbolistas_copia))\n"],"metadata":{"id":"__rthEvTf4Zv","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676666149899,"user_tz":300,"elapsed":9,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"5302e05d-ed61-434b-ccce-78f3bf225099"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\n","Eliminamos el elemento con clave 22\n","Ahora el diccionario queda: {1: 'Casillas', 6: 'Iniesta', 3: 'Piqué', 5: 'Puyol', 7: 'Villa', 8: 'Xavi Hernández', 9: 'Torres', 11: 'Capdevila', 14: 'Xavi Alonso', 15: 'Ramos', 16: 'Busquets', 10: 'Cesc'}\n","\n","La copia del diccionario tiene los valores:\n","{1: 'Casillas', 6: 'Iniesta', 3: 'Piqué', 5: 'Puyol', 7: 'Villa', 8: 'Xavi Hernández', 9: 'Torres', 11: 'Capdevila', 14: 'Xavi Alonso', 15: 'Ramos', 16: 'Busquets', 10: 'Cesc'}\n","\n","Vaciamos el diccionario nuevo creado, ahora los valores en el: {}\n"]}]},{"cell_type":"code","source":["# Comprobamos si existe o no una clave en un diccionario\n","if 2 in futbolistas:\n"," print (\"\\nEl futbolista con la clave 2 existe en el diccionario.\")\n","else:\n"," print (\"\\nEl futbolista con la clave 2 NO existe en el diccionario.\")\n","\n","if 8 in futbolistas:\n"," print (\"\\nEl futbolista con la clave 8 existe en el diccionario.\")\n","else:\n"," print (\"\\nEl futbolista con la clave 8 NO existe en el diccionario.\")"],"metadata":{"id":"rKI14LMJfqEU","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676666200077,"user_tz":300,"elapsed":8,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"47ecfdff-e694-43c7-f81a-17b8f2debae2"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\n","El futbolista con la clave 2 NO existe en el diccionario.\n","\n","El futbolista con la clave 8 existe en el diccionario.\n"]}]},{"cell_type":"code","source":["# Creamos un diccionario a partir de una lista de claves\n","keys = ['nombre', 'apellidos', 'edad']\n","datos_usuario = dict.fromkeys(keys, 'null')\n","print (\"\\nCreamos un diccionario a partir de la lista de claves:\")\n","print (keys)\n","print (\"y con valor 'null'\")\n","print (\"Así el diccionario queda: {}\".format(datos_usuario))\n","\n","# Creación de un diccionario\n","diccionario=dict({1:'rei',2:'pepe',3:'javier'})\n","print(diccionario)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"QTe5uk4wZwBd","executionInfo":{"status":"ok","timestamp":1676666254714,"user_tz":300,"elapsed":430,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"7c12d0a6-5e8e-41b5-c5b9-738d8a29ebb1"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\n","Creamos un diccionario a partir de la lista de claves:\n","['nombre', 'apellidos', 'edad']\n","y con valor 'null'\n","Así el diccionario queda: {'nombre': 'null', 'apellidos': 'null', 'edad': 'null'}\n","{1: 'rei', 2: 'pepe', 3: 'javier'}\n"]}]},{"cell_type":"code","source":["# Devolvemos los elementos del diccionario en una tupla\n","tupla = futbolistas.items()\n","print (\"\\nEl diccionario convertido en tupla queda así:\")\n","print (tupla)\n","\n","# Unimos dos diccionarios existentes\n","suplentes = {\n"," 4:'Marchena', 12:'Valdes', 13:'Mata',\n"," 17:'Arbeloa', 19:'Llorente', 20:'Javi Martinez',\n"," 21:'Silva', 23:'Reina'\n","}\n","\n","print (\"\\nUnimos el diccionario: \")\n","print (futbolistas)\n","futbolistas.update(suplentes) # Aquí hacemos la unión de los diccionarios\n","print (\"con el diccionario:\")\n","print (suplentes)\n","print (\"siendo el resultado:\")\n","print (futbolistas)"],"metadata":{"id":"PvoXJMx-fqKH","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676666309057,"user_tz":300,"elapsed":7,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"de753278-24ad-41bb-b502-784b9e49d527"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\n","El diccionario convertido en tupla queda así:\n","dict_items([(1, 'Casillas'), (6, 'Iniesta'), (3, 'Piqué'), (5, 'Puyol'), (7, 'Villa'), (8, 'Xavi Hernández'), (9, 'Torres'), (11, 'Capdevila'), (14, 'Xavi Alonso'), (15, 'Ramos'), (16, 'Busquets'), (10, 'Cesc')])\n","\n","Unimos el diccionario: \n","{1: 'Casillas', 6: 'Iniesta', 3: 'Piqué', 5: 'Puyol', 7: 'Villa', 8: 'Xavi Hernández', 9: 'Torres', 11: 'Capdevila', 14: 'Xavi Alonso', 15: 'Ramos', 16: 'Busquets', 10: 'Cesc'}\n","con el diccionario:\n","{4: 'Marchena', 12: 'Valdes', 13: 'Mata', 17: 'Arbeloa', 19: 'Llorente', 20: 'Javi Martinez', 21: 'Silva', 23: 'Reina'}\n","siendo el resultado:\n","{1: 'Casillas', 6: 'Iniesta', 3: 'Piqué', 5: 'Puyol', 7: 'Villa', 8: 'Xavi Hernández', 9: 'Torres', 11: 'Capdevila', 14: 'Xavi Alonso', 15: 'Ramos', 16: 'Busquets', 10: 'Cesc', 4: 'Marchena', 12: 'Valdes', 13: 'Mata', 17: 'Arbeloa', 19: 'Llorente', 20: 'Javi Martinez', 21: 'Silva', 23: 'Reina'}\n"]}]},{"cell_type":"markdown","metadata":{"id":"IcCOSky8UB2Y"},"source":["# Entrada y salida de datos"]},{"cell_type":"code","metadata":{"id":"Zzv88UnWUB2Y","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676666363322,"user_tz":300,"elapsed":5930,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"6ef894c4-6c7c-412d-80d7-420e528cfd53"},"source":["#Entrada de datos\n","x=input('ingrese el dato 1: ');\n","y=input('ingrese el dato 2: ');\n","print('tipo de datos',type(x),type(y))\n","print('suma de datos sin casteo',x+y)\n","print('suma de datos con casteo',float(x)+float(y))"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["ingrese el dato 1: 4\n","ingrese el dato 2: 5\n","tipo de datos \n","suma de datos sin casteo 45\n","suma de datos con casteo 9.0\n"]}]},{"cell_type":"markdown","metadata":{"id":"OVCLtPfGUB2a"},"source":["# Operadores relacionales"]},{"cell_type":"markdown","metadata":{"id":"OcSuhLioUB2a"},"source":["![image.png]()"]},{"cell_type":"code","metadata":{"id":"r4xtvnDmUB2b","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1674699846521,"user_tz":300,"elapsed":13,"user":{"displayName":"Harold Brayan Arteaga Arteaga","userId":"02881993551096447470"}},"outputId":"88af73c7-f56b-47e7-c2b6-19abe3ce380c"},"source":["a = 5\n","b = 5\n","a1 = 7\n","b1 = 3\n","c1 = 3\n","\n","cadena1 = 'Hola'\n","cadena2 = 'Adios'\n","\n","\n","\n","# igual\n","c = a == b\n","print (c)\n","\n","cadenas = cadena1 == cadena2\n","print (cadenas)\n","\n","# diferente\n","d = a1 != b\n","print (d)\n","\n","cadena0 = cadena1 != cadena2\n","print (cadena0)\n","\n","# mayor que\n","e = a1 > b1\n","print (e)\n","\n","# menor que\n","f = b1 < a1\n","print (f)\n","\n","# mayor o igual que\n","g = b1 >= c1\n","print (g)\n","\n","# menor o igual que\n","h = b1 <= c1\n","print (h)"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["True\n","False\n","True\n","True\n","True\n","True\n","True\n","True\n"]}]},{"cell_type":"code","source":["5==5"],"metadata":{"id":"goD1l0VHq_H6","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676666451438,"user_tz":300,"elapsed":5,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"21c61a4c-392d-4c20-f877-2157c1c04470"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["True"]},"metadata":{},"execution_count":55}]},{"cell_type":"code","source":["7!=9"],"metadata":{"id":"RLawe21Ptmeb","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1674860259379,"user_tz":300,"elapsed":3,"user":{"displayName":"Reinel Tabares Soto","userId":"11849440450678359784"}},"outputId":"452676e6-2c64-4d52-f41d-daae8f684d69"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["True"]},"metadata":{},"execution_count":107}]},{"cell_type":"markdown","metadata":{"id":"vjsi1r7dUB3S"},"source":["# Operadores lógicos"]},{"cell_type":"markdown","metadata":{"id":"tNJTXsOGUB3S"},"source":["![image.png]()"]},{"cell_type":"code","metadata":{"id":"lHzhy-ZvUB3S","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676666608562,"user_tz":300,"elapsed":8,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"486a2473-b134-4aca-a4d3-d49568fed42e"},"source":["x=3\n","y=7\n","if x==3 and y==7:\n"," print('si')\n","else:\n"," print('no')"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["si\n"]}]},{"cell_type":"markdown","metadata":{"id":"p0yFkcijUB3Q"},"source":["# Estructuras condicionadas"]},{"cell_type":"markdown","metadata":{"id":"e_VAgq9TUB3Q"},"source":["![image.png]()"]},{"cell_type":"code","metadata":{"id":"a0AigYlKUB3R","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676666817803,"user_tz":300,"elapsed":814,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"2e813eb3-d62f-4410-cc54-19c08eb2bcec"},"source":["if 5>2:\n"," print('si')\n"," print('si2')\n","elif 1>3:\n"," print('sino si')\n","else:\n"," print('no')\n"," print('PorFuera')\n","print('PorFuera2')\n",""],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["si\n","si2\n","PorFuera2\n"]}]},{"cell_type":"markdown","metadata":{"id":"mUlIjZUHUB3U"},"source":["# Ejercicios"]},{"cell_type":"markdown","metadata":{"id":"8I7oH0XgUB3V"},"source":["1. Realice un programa que pida la edad de una persona en años. Si la edad es mayor o igual a 18, el programa debe imprimir la cadena: ‘ADULTO’. Si la edad es menor a 18 se debe imprimir: ‘MENOR DE EDAD’.\n","\n","2. Diseñe un algoritmo que determine si ún número es o no es, par positivo.\n","\n","3. Diseñe un algoritmo que lea un número de tres cifras y determine si es igual al revés del número.\n"]},{"cell_type":"code","source":["# Escribe aquí tu código\n"],"metadata":{"id":"dG9i4os_qvZb"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"YwqQzkDKUB3b"},"source":["# Estructuras repetitivas"]},{"cell_type":"code","metadata":{"id":"Zwu-4GblUB3b","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676666956959,"user_tz":300,"elapsed":982,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"9b67c4f7-b433-4936-c05e-ed80aeb83b3e"},"source":["#ciclo for\n","print(\"Ciclo for en un rango de datos: \")\n","for i in range(2,10):\n"," print(i)\n","\n","print('Ciclo for en una coleccion de datos:')\n","x=[3,4,5,7,8,\"Hola\"]\n","for i in x:\n"," print(\"El elemento es= \",i)\n","for i in range(len(x)):\n"," print(\"El elemento de la posicion\",i,'es:',x[i])"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Ciclo for en un rango de datos: \n","2\n","3\n","4\n","5\n","6\n","7\n","8\n","9\n","Ciclo for en una coleccion de datos:\n","El elemento es= 3\n","El elemento es= 4\n","El elemento es= 5\n","El elemento es= 7\n","El elemento es= 8\n","El elemento es= Hola\n","El elemento de la posicion 0 es: 3\n","El elemento de la posicion 1 es: 4\n","El elemento de la posicion 2 es: 5\n","El elemento de la posicion 3 es: 7\n","El elemento de la posicion 4 es: 8\n","El elemento de la posicion 5 es: Hola\n"]}]},{"cell_type":"code","metadata":{"id":"U39BrrCCUB3c","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1674860994178,"user_tz":300,"elapsed":8,"user":{"displayName":"Reinel Tabares Soto","userId":"11849440450678359784"}},"outputId":"acecb9d5-9385-46ab-cf86-fd4fb6f225a2"},"source":["print('Ciclo for en un diccionario:')\n","frutas = {'Fresa':'roja', 'Limon':'verde', 'Papaya':'naranja', 'Manzana':'amarilla', 'Guayaba':'rosa'}\n","for nombre, color in frutas.items():\n"," print (nombre, \"es de color\", color)\n","for llave in frutas:\n"," print(llave, 'es de color', frutas[llave])"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Ciclo for en un diccionario:\n","Fresa es de color roja\n","Limon es de color verde\n","Papaya es de color naranja\n","Manzana es de color amarilla\n","Guayaba es de color rosa\n","Fresa es de color roja\n","Limon es de color verde\n","Papaya es de color naranja\n","Manzana es de color amarilla\n","Guayaba es de color rosa\n"]}]},{"cell_type":"code","metadata":{"id":"7X8LUod8UB3e","colab":{"base_uri":"https://localhost:8080/","height":169},"executionInfo":{"status":"error","timestamp":1676667081427,"user_tz":300,"elapsed":413,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"c14ba82b-bd86-4931-98fe-a395a142d91a"},"source":["frutas"],"execution_count":null,"outputs":[{"output_type":"error","ename":"NameError","evalue":"ignored","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)","\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mfrutas\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;31mNameError\u001b[0m: name 'frutas' is not defined"]}]},{"cell_type":"code","metadata":{"id":"6x6Dvgz7UB3f","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676667082666,"user_tz":300,"elapsed":4,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"0f739746-65cb-4737-bc74-f154cc40dec3"},"source":["frutas = {'Fresa':'roja', 'Limon':'verde', 'Papaya':'naranja', 'Manzana':'amarilla', 'Guayaba':'rosa'}\n","frutas"],"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["{'Fresa': 'roja',\n"," 'Limon': 'verde',\n"," 'Papaya': 'naranja',\n"," 'Manzana': 'amarilla',\n"," 'Guayaba': 'rosa'}"]},"metadata":{},"execution_count":66}]},{"cell_type":"code","metadata":{"id":"V1TWkc7aUB3g","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676667085028,"user_tz":300,"elapsed":13,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"8db52fa3-1740-46b3-cace-b8c4543f6600"},"source":["len(frutas)"],"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["5"]},"metadata":{},"execution_count":67}]},{"cell_type":"code","metadata":{"id":"ebpdNCAkUB3h","colab":{"base_uri":"https://localhost:8080/","height":36},"executionInfo":{"status":"ok","timestamp":1676667085030,"user_tz":300,"elapsed":11,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"08f2960d-db2d-428e-f005-54801c0e5bea"},"source":["frutas.get('Fresa')"],"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["'roja'"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"string"}},"metadata":{},"execution_count":68}]},{"cell_type":"code","metadata":{"id":"w-AvD18AUB3i","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676667087484,"user_tz":300,"elapsed":7,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"af2e74eb-ed2f-44ed-9e56-3512e82f0298"},"source":["for i in range(10):\n"," print(i)"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["0\n","1\n","2\n","3\n","4\n","5\n","6\n","7\n","8\n","9\n"]}]},{"cell_type":"code","metadata":{"id":"rnII30YuUB3l","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676667132694,"user_tz":300,"elapsed":965,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"0ea84d09-635a-4cdf-9c2a-18fd4b0f6201"},"source":["v=['a','b','c','d']\n","\n","for i in range(len(v)):\n"," print(i,\"-->\",v[i])\n"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["0 --> a\n","1 --> b\n","2 --> c\n","3 --> d\n"]}]},{"cell_type":"code","source":["for i in v:\n"," print(i)"],"metadata":{"id":"wE0d5jPNxz9j","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676667132696,"user_tz":300,"elapsed":11,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"b986c86f-a85f-4377-f802-09dbf0d12edb"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["a\n","b\n","c\n","d\n"]}]},{"cell_type":"code","metadata":{"id":"T0cml0ioUB3m","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676667177920,"user_tz":300,"elapsed":7,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"4c86820d-6355-45e8-c9fb-cdc7f9bdb75b"},"source":["#ciclo while\n","cont=0\n","while cont<10:\n"," print(cont)\n"," cont+=2"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["0\n","2\n","4\n","6\n","8\n"]}]},{"cell_type":"markdown","metadata":{"id":"cDvhM0cVUB3n"},"source":["# Ejercicio"]},{"cell_type":"markdown","metadata":{"id":"up221wehUB3o"},"source":["1. Realice un programa que lea las notas de un estudiante, despues devolver el promedio, la mejor y la peor nota."]},{"cell_type":"code","source":["# Escribe aquí tu código\n"],"metadata":{"id":"_jMKGr_tqpEx"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"ccpE2G3VUB4H"},"source":["# Funciones"]},{"cell_type":"markdown","metadata":{"id":"ZEH4KdMwUB4H"},"source":["Python es un lenguaje **indentado**, no usa corchetes para delimitar el alcance de las estructuras de programación sino que se fija en los **cambios de indentación**.\n","\n","No se declara el tipo de los argumentos de las funciones. La semática de la implementación ha de estar preparada para funcionar con los tipos de datos que quieres."]},{"cell_type":"code","metadata":{"id":"hwKKPlvYUB4H","scrolled":true},"source":["def funcion_1(a,b):\n"," r = a**2\n"," return r+b\n","\n","def greatest(a,b):\n"," if a>b:\n"," return a\n"," else:\n"," return b\n","\n"],"execution_count":null,"outputs":[]},{"cell_type":"code","source":["funcion_1 (10.4,2)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"jzmAlNPuKUtG","executionInfo":{"status":"ok","timestamp":1676667378906,"user_tz":300,"elapsed":4,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"bb2798e3-8479-4baa-8ed2-054eaf466066"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["110.16000000000001 \n","\n"]}]},{"cell_type":"code","source":["funcion_1 (10.4, np.array([2,4]))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"1DsDyHGKKWDs","executionInfo":{"status":"ok","timestamp":1676667406246,"user_tz":300,"elapsed":4,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"2b1f409a-3f83-42ad-f4d4-c5f1b866a486"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["array([110.16, 112.16])"]},"metadata":{},"execution_count":83}]},{"cell_type":"code","source":["funcion_1(np.array([1,5]),np.array([3,2]))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"sM5hYvORKXyp","executionInfo":{"status":"ok","timestamp":1676667423825,"user_tz":300,"elapsed":1046,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"2b6e27db-d9a2-49e4-f754-cfb4d114b3cb"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["array([ 4, 27])"]},"metadata":{},"execution_count":84}]},{"cell_type":"code","source":["m1 = np.array([[3,4],[1,1]])\n","m2 = np.array([[5,6],[0,0]])\n","funcion_1 (m1,m2)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"43ymC9egKYqd","executionInfo":{"status":"ok","timestamp":1676667473183,"user_tz":300,"elapsed":6,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"127aaeeb-33db-473d-b2d8-fd9ac3f44f61"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["array([[14, 22],\n"," [ 1, 1]])"]},"metadata":{},"execution_count":86}]},{"cell_type":"code","source":["greatest(10,2)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"nhyMF2tEKZnu","executionInfo":{"status":"ok","timestamp":1676667538136,"user_tz":300,"elapsed":2,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"0c8869ef-81ce-47bc-9338-4c9978bafb3d"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["10\n"]}]},{"cell_type":"markdown","metadata":{"id":"inKB12zpUB4L"},"source":["Podemos definir valores por defecto para los argumentos de las funciones y llamarlas usando explícitamente el nombre de los argumentos. Además, las funciones pueden devolver varios valores."]},{"cell_type":"code","metadata":{"id":"VX4Cz1szUB4M"},"source":["def f_power(x, p=2):\n"," return x**p"],"execution_count":null,"outputs":[]},{"cell_type":"code","source":["f_power(x=3)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"eIVsP80CLQPV","executionInfo":{"status":"ok","timestamp":1676667605756,"user_tz":300,"elapsed":4,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"1997d910-c15d-41ee-a8b6-ba92b3328055"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["9"]},"metadata":{},"execution_count":90}]},{"cell_type":"code","source":["f_power(p=4, x=3)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"vqCm3GULLQZG","executionInfo":{"status":"ok","timestamp":1676667615757,"user_tz":300,"elapsed":440,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"eb1387d1-bbcb-4c78-8da9-25f1d179d277"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["81"]},"metadata":{},"execution_count":91}]},{"cell_type":"code","metadata":{"id":"wVkyl6EkUB4O","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676667698279,"user_tz":300,"elapsed":4,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"33c7d5e3-7cae-4fc9-80e2-16f95830b403"},"source":["def f_power(x, p=2):\n"," return x**p, x*p\n","\n","r = f_power(p=4, x=3)\n","print(r[0],r[1],\"\\n\")"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["81 12 \n","\n"]}]},{"cell_type":"code","source":["r1, r2 = f_power(p=4, x=3)\n","print(r1)\n","print(r2,\"\\n\")"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"b3EenOhFLo6Z","executionInfo":{"status":"ok","timestamp":1676667731343,"user_tz":300,"elapsed":1094,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"4d5e14f4-4ef6-423c-ee4c-4aea829c478d"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["81\n","12 \n","\n"]}]},{"cell_type":"code","source":["\n","a,b = 10, np.array([10,4,-3])\n","print(a)\n","print(b)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"xq2Fi4UvLp8J","executionInfo":{"status":"ok","timestamp":1676667752440,"user_tz":300,"elapsed":2,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"0d11b18b-5a39-4b81-d115-58a527ea5dd8"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["10\n","[10 4 -3]\n"]}]},{"cell_type":"code","metadata":{"id":"HtHsrXySUB4Q","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1674699847015,"user_tz":300,"elapsed":3,"user":{"displayName":"Harold Brayan Arteaga Arteaga","userId":"02881993551096447470"}},"outputId":"efaf789e-0a8e-472a-f5e4-1e0f16630849"},"source":["def f_power(x, p=2):\n"," return x**p\n","\n","def f_powers(x, p1=2, p2=3):\n"," return x**p1, x**p2\n","\n","print(f_power(4))\n","print(f_power(4,3))\n","print(f_powers(4, p1=3))\n","xp1, xp2 = f_powers(4, p2=4, p1=3)\n","print(\"power1\",xp1, \"power2\", xp2)"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["16\n","64\n","(64, 64)\n","power1 64 power2 256\n"]}]},{"cell_type":"markdown","source":["# Paso por valor y referencia\n","\n","Dependiendo del tipo de dato que enviemos a la **función**, podemos diferenciar dos comportamientos:\n","\n","**Paso por valor**: Se crea una copia local de la variable dentro de la función.\n","\n","**Paso por referencia**: Se maneja directamente la variable, los cambios realizados dentro de la función le afectarán también fuera.\n","\n","Tradicionalmente:\n","\n","**Los tipos simples se pasan por valor**: Enteros, flotantes, cadenas, lógicos...\n","\n","**Los tipos compuestos se pasan por referencia**: Listas, diccionarios, conjuntos...\n"],"metadata":{"id":"qa2gm3gcwv5J"}},{"cell_type":"markdown","source":["**Ejemplo de paso por valor**\n","\n","Como ya sabemos los números se pasan por valor y crean una copia dentro de la función, por eso no les afecta externamente lo que hagamos con ellos:"],"metadata":{"id":"wS7mnGAuxKVJ"}},{"cell_type":"code","source":["def doblar_valor(x):\n"," x = 2*x\n"," return x"],"metadata":{"id":"DZ32v6yOxl-j"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["x=10\n","doblar_valor(x)\n","print(x,doblar_valor(x))"],"metadata":{"id":"FuhiIByByEaP","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676982182910,"user_tz":300,"elapsed":5,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"a16983f9-084f-43f5-8188-08acd92831d3"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["10 20\n"]}]},{"cell_type":"markdown","source":["Para modificar los tipos simples podemos devolverlos modificados y reasignarlos:"],"metadata":{"id":"5RNDoPqWzMC3"}},{"cell_type":"code","source":["x = 10\n","x = doblar_valor(x)\n","print(x)"],"metadata":{"id":"FTgOjjCXzNbg","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1676982182910,"user_tz":300,"elapsed":4,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"e35c7b88-3b4d-495d-81d4-b7445018d4d5"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["20\n"]}]},{"cell_type":"markdown","source":["**Ejemplo de paso por referencia**\n","\n","Sin embargo las listas u otras colecciones, al ser tipos compuestos se pasan por referencia, y si las modificamos dentro de la función estaremos modificándolas también fuera:"],"metadata":{"id":"fC38H9NqykKM"}},{"cell_type":"code","source":["def doblar_valores(y):\n"," for i,n in enumerate(y):\n"," y[i] = 2*y[i]"],"metadata":{"id":"eHRDWVZfyitu"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["y=[1,2,3]"],"metadata":{"id":"TkPDHM0e49I5"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["doblar_valores(y)"],"metadata":{"id":"_YNke5IrjzvR"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["print(y)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"20qNiWYMj2zk","executionInfo":{"status":"ok","timestamp":1676982182911,"user_tz":300,"elapsed":3,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"}},"outputId":"c2ccaf33-085a-42b9-a719-73fa4de30f07"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["[2, 4, 6]\n"]}]},{"cell_type":"markdown","metadata":{"id":"5pyWLfMpi-xT"},"source":["## Algortimo multipliación 2"]},{"cell_type":"markdown","metadata":{"id":"i1o87WMStAXz"},"source":["![fig3.png]()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"YsaVIxZcHtjg"},"outputs":[],"source":["# función para determinar el cociente\n","def funcionCociente(x,w):\n"," q=0\n"," r=x\n"," while r>=w:\n"," q=q+1\n"," r=r-w\n"," return q"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XM2s7kGcHtjg"},"outputs":[],"source":["# función para determinar el residuo\n","def funcionResiduo(x,w):\n"," q=0\n"," r=x\n"," while r>=w:\n"," q=q+1\n"," r=r-w\n"," return r"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"tGqxiiiTHtjg"},"outputs":[],"source":["# función para determinar si un numero es par\n","def funcionPar(u):\n"," if funcionResiduo(u,2)==0:\n"," par=True\n"," else:\n"," par=False\n"," return par"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Xa5hq49AHtjg"},"outputs":[],"source":["def funcionMultiplicar(x,w):\n"," z=0\n"," u=x\n"," v=w\n"," while u!=0:\n"," if not funcionPar(u):\n"," z=z+v\n"," u=funcionCociente(u,2)\n"," v=2*v\n"," return z"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":5393,"status":"ok","timestamp":1677156291476,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"},"user_tz":300},"id":"yuGP0rT7Htjh","outputId":"543136ff-2b32-4ab1-9d56-903033fdbba4"},"outputs":[{"name":"stdout","output_type":"stream","text":["Escribir un numero par multiplicar: 6\n","Escribir otro numero para multiplicar: 5\n","El resultado de la mutiplicación es: 30\n"]}],"source":["x=int(input('Escribir un numero par multiplicar: '))\n","w=int(input('Escribir otro numero para multiplicar: '))\n","print('El resultado de la mutiplicación es: ', funcionMultiplicar(x,w))"]},{"cell_type":"markdown","metadata":{"id":"9TFkr-kjUB4W"},"source":["# Expresiones compactas / Comprehensions"]},{"cell_type":"markdown","metadata":{"id":"2ql0sbHoUB4W"},"source":["Fíjate cómo las siguientes expresiones son equivalentes:"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":2,"status":"ok","timestamp":1676668143098,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"},"user_tz":300},"id":"xbXj2IIIUB4X","outputId":"d990cd58-e48b-48f6-d0dc-ee98fad2a821"},"outputs":[{"output_type":"stream","name":"stdout","text":["mayor que 10\n"]}],"source":["a=15\n","if a > 10:\n"," s = \"mayor que 10\"\n","else:\n"," s = \"menor que 10\"\n","\n","print(s)"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":6,"status":"ok","timestamp":1676668152435,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"},"user_tz":300},"id":"KAXJngnAUB4Y","outputId":"973aff3c-5966-47d9-931f-998543149085"},"outputs":[{"output_type":"stream","name":"stdout","text":["mayor que 10\n"]}],"source":["a = 15\n","s = \"mayor que 10\" if a > 10 else \"menor que 10\"\n","print(s)"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":3,"status":"ok","timestamp":1676668186019,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"},"user_tz":300},"id":"VAOQ0XrjUB4a","outputId":"754b5ec6-3a1b-4b2f-ea6d-2773353b289b"},"outputs":[{"output_type":"stream","name":"stdout","text":["[0, 1, 2, 3, 4]\n"]}],"source":["l=[]\n","for i in range(5):\n"," l.append(i)\n","print(l)"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":1297,"status":"ok","timestamp":1676668205540,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"},"user_tz":300},"id":"jrsyNt34UB4b","outputId":"fe86099c-5100-4dfb-942f-083e1402a519"},"outputs":[{"output_type":"stream","name":"stdout","text":["[0, 1, 2, 3, 4]\n"]}],"source":["l=[i for i in range(5)]\n","print(l)"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":8,"status":"ok","timestamp":1676668269906,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"},"user_tz":300},"id":"so8A_AQ6UB4c","outputId":"8c97076d-4114-4643-dd91-9406cc96c927"},"outputs":[{"output_type":"stream","name":"stdout","text":["['10A', '-4B', '20A', '5A']\n"]}],"source":["a = [10, -4, 20, 5]\n","\n","#o = [\"10A\", \"-4B\", \"20A\", \"5A\"]\n","\n","o = []\n","for i in a:\n"," if i<0:\n"," o.append(str(i)+\"B\")\n"," else:\n"," o.append(str(i)+\"A\")\n","\n","print(o)"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":1442,"status":"ok","timestamp":1676668324920,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"},"user_tz":300},"id":"v7uL-y9NUB4e","outputId":"06171ebf-8d4b-4593-ab75-843d23503702"},"outputs":[{"output_type":"stream","name":"stdout","text":["['10A', '-4B', '20A', '5A']\n"]}],"source":["a = [10, -4, 20, 5]\n","def convert(x):\n"," return str(x)+\"B\" if x<0 else str(x)+\"A\"\n","\n","o = [convert(i) for i in a]\n","print(o)"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":13,"status":"ok","timestamp":1674699569449,"user":{"displayName":"Harold Brayan Arteaga Arteaga","userId":"02881993551096447470"},"user_tz":300},"id":"z8kgve0vUB4f","outputId":"d0383ce7-f0c2-46f1-f77e-c4f46f748457"},"outputs":[{"name":"stdout","output_type":"stream","text":["['el numero 0', 'el numero 1', 'el numero 2', 'el numero 3', 'el numero 4', 'el numero 5', 'el numero 6', 'el numero 7', 'el numero 8', 'el numero 9']\n"]}],"source":["r = []\n","for i in range(10):\n"," r.append(\"el numero \"+str(i))\n","print(r)"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":964,"status":"ok","timestamp":1676668366344,"user":{"displayName":"REINEL TABARES SOTO","userId":"06191532127423773923"},"user_tz":300},"id":"W2GqgKLMUB4g","outputId":"71591792-2e78-4e8a-cf5b-2dc2d9691289"},"outputs":[{"output_type":"stream","name":"stdout","text":["['el numero 0', 'el numero 1', 'el numero 2', 'el numero 3', 'el numero 4', 'el numero 5', 'el numero 6', 'el numero 7', 'el numero 8', 'el numero 9']\n"]}],"source":["r = [\"el numero \"+str(i) for i in range(10)]\n","print(r)"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":14,"status":"ok","timestamp":1674699569450,"user":{"displayName":"Harold Brayan Arteaga Arteaga","userId":"02881993551096447470"},"user_tz":300},"id":"eQHg-bTzWA1Y","outputId":"a0e4bc4c-feaf-455b-db5c-b957b186147a"},"outputs":[{"name":"stdout","output_type":"stream","text":["Fresa es de color roja\n","Limon es de color verde\n","Papaya es de color naranja\n","Manzana es de color amarilla\n","Guayaba es de color rosa\n","\n"]},{"data":{"text/plain":["['Fresa es de color roja',\n"," 'Limon es de color verde',\n"," 'Papaya es de color naranja',\n"," 'Manzana es de color amarilla',\n"," 'Guayaba es de color rosa']"]},"execution_count":41,"metadata":{},"output_type":"execute_result"}],"source":["frutas = {'Fresa':'roja', 'Limon':'verde', 'Papaya':'naranja', 'Manzana':'amarilla', 'Guayaba':'rosa'}\n","for nombre, color in frutas.items():\n"," print (nombre, \"es de color\", color)\n","\n","print()\n","r = [nombre+\" es de color \"+color for nombre, color in frutas.items()]\n","r"]},{"cell_type":"markdown","source":["# Manejo de excepciones y errores.\n","\n","### Catching"],"metadata":{"id":"G7Zqyf_zLHh5"}},{"cell_type":"code","execution_count":null,"metadata":{"id":"uz3Qtsv4eAcl","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1692069205059,"user_tz":300,"elapsed":4,"user":{"displayName":"Johan Sebastian Piña Duran","userId":"00867931128936262856"}},"outputId":"daec8c19-5d1e-4edf-cf37-efe9bcc08977"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["3"]},"metadata":{},"execution_count":1}],"source":["int(3.2)"]},{"cell_type":"code","source":["int(\"hola\")"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":179},"id":"tb_Ov8YlLuxp","executionInfo":{"status":"error","timestamp":1692069212421,"user_tz":300,"elapsed":6,"user":{"displayName":"Johan Sebastian Piña Duran","userId":"00867931128936262856"}},"outputId":"da5f6aff-5378-4c51-e6f5-a7a06e955462"},"execution_count":null,"outputs":[{"output_type":"error","ename":"ValueError","evalue":"ignored","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)","\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"hola\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;31mValueError\u001b[0m: invalid literal for int() with base 10: 'hola'"]}]},{"cell_type":"markdown","source":["Manejar cualquier tipo de error que pase en un bloque de código"],"metadata":{"id":"KOM55qXHML0v"}},{"cell_type":"code","source":["def ejemplo_try_except(valor):\n"," try:\n"," resultado = 10 / valor\n"," print(\"El resultado es:\", resultado)\n"," except Exception as e:\n"," print(\"Ha ocurrido un error:\", e)\n","\n","# Ejemplos de llamadas a la función\n","ejemplo_try_except(2)\n","ejemplo_try_except(0)\n","ejemplo_try_except('cadena')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"2WDzmUi6MQLX","executionInfo":{"status":"ok","timestamp":1692069342176,"user_tz":300,"elapsed":413,"user":{"displayName":"Johan Sebastian Piña Duran","userId":"00867931128936262856"}},"outputId":"a05372ce-1219-4551-9940-9eb62d0a23ca"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["El resultado es: 5.0\n","Ha ocurrido un error: division by zero\n","Ha ocurrido un error: unsupported operand type(s) for /: 'int' and 'str'\n"]}]},{"cell_type":"markdown","source":["Manejando un tipo especifico de error"],"metadata":{"id":"cWMkYfODMVD-"}},{"cell_type":"code","source":["def int_times_two(x):\n"," try:\n"," return(int(x)*2)\n"," except ValueError:\n"," return 0"],"metadata":{"id":"jvGv8SiALyYk"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["int_times_two(2)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Isps9IROMcbj","executionInfo":{"status":"ok","timestamp":1692069390743,"user_tz":300,"elapsed":343,"user":{"displayName":"Johan Sebastian Piña Duran","userId":"00867931128936262856"}},"outputId":"e8d67bd3-937e-4dcd-ddcc-2499fcd7cdd2"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["4"]},"metadata":{},"execution_count":5}]},{"cell_type":"code","source":["int_times_two(2.5)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"4L8UfFujMeZw","executionInfo":{"status":"ok","timestamp":1692069398079,"user_tz":300,"elapsed":405,"user":{"displayName":"Johan Sebastian Piña Duran","userId":"00867931128936262856"}},"outputId":"52582304-616c-478b-a020-95e99e1d0d8e"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["4"]},"metadata":{},"execution_count":6}]},{"cell_type":"code","source":["int_times_two(\"hola\")"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"yF4cr2oEMgB0","executionInfo":{"status":"ok","timestamp":1692069406017,"user_tz":300,"elapsed":3,"user":{"displayName":"Johan Sebastian Piña Duran","userId":"00867931128936262856"}},"outputId":"8cf75bae-f589-4660-b333-792c813f602e"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["0"]},"metadata":{},"execution_count":7}]},{"cell_type":"markdown","source":["Manejo de la sentencia finally para que, pase o no pase un error, siempre ejecute lo que se coloque en la sentencia finally"],"metadata":{"id":"BhjEkLdtOa1Q"}},{"cell_type":"code","source":["def division_segura(dividendo, divisor):\n"," try:\n"," resultado = dividendo / divisor\n"," return resultado\n"," except ZeroDivisionError:\n"," print(\"¡Error! No puedes dividir entre cero.\")\n"," return None\n"," finally:\n"," print(\"Operación finalizada.\")"],"metadata":{"id":"Oa15Y22oOaEg"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["dividendo = 10\n","divisor = 2\n","\n","resultado_division = division_segura(dividendo, divisor)\n","\n","if resultado_division is not None:\n"," print(\"El resultado de la división es:\", resultado_division)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"7vdxh-QoOrWN","executionInfo":{"status":"ok","timestamp":1692069979082,"user_tz":300,"elapsed":359,"user":{"displayName":"Johan Sebastian Piña Duran","userId":"00867931128936262856"}},"outputId":"d822b136-92f5-48e1-bdc6-36b8d554352b"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Operación finalizada.\n","El resultado de la división es: 5.0\n"]}]},{"cell_type":"code","source":["dividendo = 10\n","divisor = 0\n","\n","resultado_division = division_segura(dividendo, divisor)\n","\n","if resultado_division is not None:\n"," print(\"El resultado de la división es:\", resultado_division)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"HZJhIVT7O1My","executionInfo":{"status":"ok","timestamp":1692070024209,"user_tz":300,"elapsed":358,"user":{"displayName":"Johan Sebastian Piña Duran","userId":"00867931128936262856"}},"outputId":"06067196-d0f8-46dd-e54c-169c1a381df1"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["¡Error! No puedes dividir entre cero.\n","Operación finalizada.\n"]}]},{"cell_type":"markdown","source":["## Raising\n","\n","Este tipo de sentencias se utilizan para generar errores personalizados dentro del código"],"metadata":{"id":"DcuscN1uOWKk"}},{"cell_type":"code","source":["def get_positive_integer_from_user():\n"," a = int(input(\"Enter a positive integer: \"))\n"," if a <= 0:\n"," raise ValueError(\"That is not a positive number!\")\n"," print (\"thanks!\")"],"metadata":{"id":"6g6DEyeAMiM8"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["get_positive_integer_from_user()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"gp1_Q6X4O7CC","executionInfo":{"status":"ok","timestamp":1692070045046,"user_tz":300,"elapsed":4640,"user":{"displayName":"Johan Sebastian Piña Duran","userId":"00867931128936262856"}},"outputId":"7c15b9a1-cf30-4981-895f-c2421ee4ce05"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Enter a positive integer: 1\n","thanks!\n"]}]},{"cell_type":"code","source":["get_positive_integer_from_user()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":304},"id":"Ygq8WpIGO9BS","executionInfo":{"status":"error","timestamp":1692070061222,"user_tz":300,"elapsed":3090,"user":{"displayName":"Johan Sebastian Piña Duran","userId":"00867931128936262856"}},"outputId":"f42d17dc-9686-4626-80a2-0d91e647e2ff"},"execution_count":null,"outputs":[{"name":"stdout","output_type":"stream","text":["Enter a positive integer: -1\n"]},{"output_type":"error","ename":"ValueError","evalue":"ignored","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)","\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mget_positive_integer_from_user\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;32m\u001b[0m in \u001b[0;36mget_positive_integer_from_user\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Enter a positive integer: \"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0ma\u001b[0m \u001b[0;34m<=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"That is not a positive number!\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m\"thanks!\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mValueError\u001b[0m: That is not a positive number!"]}]}]}